RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015

Mid-Semester Examination, September 2015		
Date : 17/09/2015 MATH FOR ECO (General)		
Time	e: 12 noon – 1 pm Paper: I	Full Marks : 25
<u>Group – A</u>		
Ans	swer any three questions :	$[3 \times 5]$
1.	 a) Let A, B, C are subsets of a universal set U. If A∪B=A∪C and A∩B=A∩C, prove B = C. b) Geometrically draw the figure of A × B, where A = {x ∈ ℝ : 2 ≤ x ≤ 3} and 	[3]
2	$\mathbf{B} = \{ \mathbf{x} \in \mathbb{R} : 4 \le \mathbf{x} \le 5 \}.$	[2]
2.	Show that the mapping $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is bijective. Find it's inverse mapping.	[5]
3.	Prove that finite intersection of open sets is open set. Is the result true for arbitrary intersection? Justify your answer.	[3] [2]
4.	 a) Prove that the set N of natural numbers is a closed set in R. b) Give examples of a boundary point which is not a limit point and also give a limit point 	
	is not a boundary point.	[2]
5.	Using the definition of convergence of a sequence, prove that sequence $\left\{\frac{n-1}{2n}\right\}$ converges to	$\frac{1}{2}$. [5]

<u>Group – B</u>

Answer any two : 6.

- a) Solve, $x^7 + x^4 + x^3 + 1 = 0$.
- $\alpha^n + \beta^n = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$ where α, β are the roots of $x^2 2x + 2 = 0$ and n is a positive integer. b)
- c) Let $G = \mathbb{R} \{1\}$. Determine whether or not (G, *) forms a group, where * is defined by a * b = a + b - ab for $a, b \in G$.

Answer any one : 7.

- a) Prove that the set of cube roots of unity forms a group under multiplication.
- b) Find all the values of $(\sqrt{3}+i)^{\frac{1}{6}}$.

_____ × _____

 $[1 \times 2]$

 $[2 \times 4]$